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Effect of an electromagnetic field on natural 
convection in an inclined porous layer 
W. Bian, P. Vasseur, E. Bilgen, and F. Meng 
Mechanical Engineering Department, Ecole Polytechnique, University of Montreal, Montreal, PQ, Canada 

An investigation is conducted to study the effect of an electromagnetic field on free 
convection of in inclined rectangular porous cavity saturated with an electrically 
conducting fluid. The enclosure has the long side walls heated isothermally, while 
the short ends are thermally insulated. A uniform magnetic field is applied normal 
to the heated walls. The porous medium, modeled according to Darcy's law, is 
assumed to be isotropic. The dimensionless governing equations are derived in 
terms of the characteristic dimensionless parameters; namely, the Rayleigh number 
R, the magnetic Hartmann number Ha, the cavity aspect ratio A, and the inclination 
angle 0, An approximate analytical solution is presented for the boundary-layer flow 
regime within a vertical cavity. A linear stability analysis is made to determine the 
effect of the magnetic field on the onset of convection in a horizontal layer heated 
from below. A numerical study is performed to assess and extend the results of the 
analytical solutions. It is found that with application of an external magnetic field, 
the temperature and velocity fields are significantly modified. 

I n t roduc t ion  

Natural convection in a rectangular porous cavity heated from the 
side has received considerable attention in recent years because 
of its applications in many engineering areas. A number of 
studies analyzing this problem model the system as a two-dimen- 
sional (2-D) layer framed by two horizontal adiabatic walls and 
two vertical isothermal walls. These studies have reported exten- 
sive theoretical (Walker and Homsy 1978; Simpkins and Blythe 
1980), numerical (Shiralkar et al. 1983; Prasad and Kulacki 
1984) and experimental (Klarsfeld 1970; Seki et al. 1978) results 
with regard to the flow and heat transfer characteristics of the 
porous layer. The state of the art has been summarized in a recent 
book by Nield and Bejan (1992). 

Most existing studies are concerned with the natural convec- 
tion heat transfer through a porous medium saturated by an 
electrically nonconducting fluid, which is the case in most practi- 
cal situations. Recently, the equally important problem of hydro- 
magnetic convective flow of a conducting fluid through a porous 
medium has been investigated. When an electrically conducting 
fluid is subjected to a magnetic field, the fluid motion induces an 
electric current and, in general, the fluid velocity is reduced due 
to interaction between the electric current and the motion. Very 
little has been done on the natural convection of electrically 
conducting fluids in porous media in the presence of a magnetic 
field, despite its potential applications. For instance, the study of 
the interaction of the geomagnetic field with the fluid in the 
geothermal region, where the Earth's crust serves as a porous 
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medium, is of great importance to geophysicists. Also, in metal- 
lurgical applications involving continuous casting, the solidifica- 
tion structure can be improved by electromagnetic stirring to 
obtain a fine-grained structure to get better final mechanical 
properties. For dendritic solidification of alloys, dendrites in the 
mushy zone can be viewed as a porous medium. 

The interaction of an external magnetic field with convection 
currents in a porous medium was apparently first considered by 
Raptis et al. (1982a, 1982b). They studied (Raptis et al. 1982a) 
the influence of a horizontal constant magnetic field upon the 
free convective flow through a porous medium occupying a 
semi-infinite region of the space bounded by two vertical infinite 
surfaces. Raptis et al. (1982b) further extended their investigation 
to study the free convection flow of a conducting fluid through a 
porous medium bounded by two horizontal plates. Singh and 
Dikshit (1987) studied the free convection of the Couette motion 
of an electrically conducting fluid through a porous medium. 
Exact solutions for the velocity field, skin-friction, and the 
volume flux of the fluid were obtained in terms of the governing 
parameters of the problem. Kumar Jha and Prasad (1991) studied 
the heat source characteristics on the free-convection and mass 
transfer flow past an impulsively started infinite vertical plate 
bounding a saturated porous medium under the action of a 
magnetic field. Effects of various parameters on the velocity field 
were extensively discussed. An analysis of the effects of Hall 
current on hydromagnetic free-convective flow through a porous 
medium bounded by a vertical plate has been theoretically inves- 
tigated by Takhar and Ram (1992). A strong magnetic field was 
imposed in a direction perpendicular to the free stream and 
inclined with an angle c~ to the vertical direction. The influence 
of Hall currents on the flow was studied for various values of a. 
Recently, Ni et al. (1993) investigated the effect of an electro- 
magnetic field on steady natural convection in a vertical enclo- 
sure filled with a porous medium. 

In the present study, an investigation is conducted to examine 
the effect of an electromagnetic field on two-dimensional 2-D 
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natural convection in an inclined slot filled with an isotropic 
porous medium saturated by an electrically conducting fluid. The 
magnetic field is applied perpendicularly to the long side walls of 
the cavity, which are differentially heated. In the special case of a 
vertical enclosure, an analytical Oseen-linearized solution for the 
boundary-layer regime is presented. When the cavity is inclined, 
the problem becomes more complicated and is studied through 
numerical simulations. The influences of the governing parame- 
ters on the fluid flow and heat transfer characteristics are well 
established. 

4' 'q' 
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Mathematical formulation 

The physical model considered in this paper is shown in Figure 1. 
A two-dimensional (2-D) inclined rectangular enclosure of height 
H and width L is filled with a porous medium saturated by an 
electrically conducting fluid. The two long side walls are main- 
tained at temperatures T~ and T~, respectively, while the short 
end walls are thermally insulated. A uniform and constant mag- 
netic field B' is applied normal to the heated sides of the cavity. 
The fluid in this enclosure experiences the mechanism of buoy- 
ancy, due to fluid density changes caused by temperature varia- 
tions resulting from heat transfer and the interaction of the 
magnetic field with the convective motion. The magnetic 
Reynolds number is assumed to be small so that the induced 
magnetic field can be neglected compared to the applied mag- 
netic field (Garandet et al. 1992). 

The equations governing the conservation of mass, momen- 
tum, energy, and electric charge transfer for laminar flow are 
written as follows: 

v . v ' = o  (1) 

- - V ' =  - V p ' +  p g +  J ' ×  B' (2) 
K 

V ' - V T ' =  ct/V2T ' (3) 

V- J = 0 ; J' = ~r(-V~b + V' × B') (4) 

lg 

J l  

Figure I Schematic of the prob lem 

These equations correspond to having the porous medium 
modeled according to Darcy's law. The porous medium is as- 
sumed to be hydrodynamically, thermally, and electrically 
isotropic and saturated with a fluid that is in local thermodynamic 
equilibrium with the solid matrix. Both viscous dissipation and 
Joulean energy dissipation are neglected. 

As discussed by Garandet et al. (1992), for a 2-D, steady-state 
situation, Equation 4 for the electric potential reduces to V 2~b = 0. 
The unique solution is Vd~ = 0, because there is always some- 
where around the enclosure an electrically insulating boundary on 
which Od?/On = 0, which means that the electric field vanishes 

Notation 

A aspect ratio, H/L 
B' applied magnetic field 
g acceleration due to gravity 
H height of the cavity 
Ha Hartmann number, B'(KtI/V.) 1/2 
J'  electric current density 
k effective thermal conductivity of saturated liquid and 

porous medium 
K permeability of fluid-saturated porous medium 
l characteristic length, Equation 19 
L thickness of the cavity 
Nu Nusselt number, Equation 9 
p'  pressure 
R Darcy-Rayleigh number, Kgf~LAT'/etfv 
T dimensionless temperature, (T' - T~)/AT' 
AT' characteristic temperature, ( T ~ -  T~) 
V' velocity field 
u, v dimensionless velocities in x and y directions, 

(u', v ' ) / : / a  r 
x, y dimensionless cartesian coordinates, (x', y ' ) /L 

Greek 

ct wavelength 
etf effective thermal diffusivity 

t3 
0 
i.t 

P 
O" 

coefficient of thermal expansion of the fluid 
inclination angle 
dynamic viscosity of the fluid 
kinematic viscosity of the fluid 
fluid density 
electrical conductivity 
electric potential 
dimensionless stream function, ~'/o~f 
dimensionless temperature, Equation 22 
dimensionless stream function, Equation 22 

Superscripts 

' dimensional quantities 
* dimensionless variables, Equation 19 

perturbations from the rest state 

Subscripts 

c cold isothermal boundary 
cr critical value for the onset of convection 
H hot isothermal boundary 
max maximum value 
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everywhere. The Lorentz force then reduces to a systematically 
damping factor. 

Scaling length, velocity, and temperature with L, etf/L and 
AT' = I ~  - T~., and elimination the pressure term in Equation 2 
in the usual way, it is readily shown that the dimensionless 
governing equations can be expressed as follows: 

2~2~ 020 ( aT oT ) 
(1 + Ha )~-~x 2 + °Y 2 = - R  ~xSin 0 - --cOSoy 0 (5) 

b~ 0r a~ ar  
v2r (6) 

0y bx Ox 8y 

where ~ is a dimensionless stream function defined as follows: 

o~, bq, 
u = - -  ; v = - - -  (7) 

ay bx 

so that Equation 1 is identically satisfied. 
The nondimensional boundary conditions over the walls of the 

enclosure are as follows: 

!=0 T=O on x--O 
= 0  T = I  on x = l  

bT 
= 0 by 0 on y +_A/2 (8) 

where A = H/L is the cavity aspect ratio. 
The overall heat transfer rate across the enclosure is expressed 

by the average Nusselt number defined as follows: 

± fa/2 aT dy (9) 
NU= A -A/2OX x=0 

The present problem is dependent on the parameters R, Ha, 
A, and 0. Ranges of these physical parameters are selected to 
explore the effects of the magnetic field on natural convectionin 
porous media. 

Numerical method 

Numerical solutions of the full conservation equations are ob- 
tained using the control-volume finite difference method de- 
scribed by Patankar (1980). A power-law scheme is adopted for 
the convection-diffusion formulation. The discretized equations 
obtained are solved iteratively, using a line-by-line application of 
the Thomas algorithm. The numerical procedure starts with deter- 
mining the temperature field T by solving the energy Equation 6. 
Next, the momentum Equation 5 is solved for ~ using a known 
temperature distribution. Finally, the velocity components are 
evaluated, for points that lie on the faces of each elementary 
control volume, using Equation 7. 

Nonuniform grid spacing is used in the x-direction. Grid 
spacing is minimum near a heated wall and is increased away 
from the wall up to the center of the cavity. Uniform mesh 
spacing is used in the y-direction. Trial calculations were neces- 
sary in order to optimize computation time and accuracy. Conver- 
gence was verified by employing coarser and finer grids on 
selected test problems. During the program tests, 61 X 41, 61 x 
61, and 81 X 81 grids were used. Because of minor differences 
(less than 1%) and to save on computation cost, the results 
presented here are obtained with 61 X 41 for a cavity with an 
aspect ratio A = 4 and 61 x 61 with A = 8. The criterion used 
for the iterative convergence is as follows: 

I fij,ew -fi . j  o,a I 
max If/,1 old I < rf (10) 

were fi,j stands for temperature and stream function, and rf has 
been taken as 10 -6 for both ~ and T. 

Prior to calculations, checks were conducted to validate the 
calculation procedure by reference to the flow of a vertical 
porous enclosure. In the limiting case of no magnetic field 
(Ha = 0), some of the cases considered by Shiralkar et al. (1983) 
were reproduced. In general, it was found that essentially identi- 
cal flow and temperature patterns as well as Nusselt number were 
obtained. For instance when R = 500 and A = 5.0, an overall 
Nusselt number of 5.02 was obtained in the present study, while 
that reported by Lauriat and Prasad (1987) was 4.92. As an 
additional check on the accuracy of the results, the convergence 
of the numerical solutions was checked by performing overall 
energy conservations. 

Results and discussion 

In this section the results of the numerical study are discussed in 
order to understand the natural convection of an electrically 
conducting fluid in an inclined porous enclosure in the presence 
of a magnetic field. The non-dimensional parameters are the 
Rayleigh number R, the Hartmann number Ha, the aspect ratio 
A, and the inclination angle 0. In the present study A = 4 and 8. 
Computations are carried out for R ranging from 2 x 102 to 
5 × 103, Ha ranging from 0 to 10 and 0 ° < 0 < 180 °. Changes in 
field characteristics due to combined effect of buoyancy and 
applied magnetic field are discussed in detail. Effects of the 
magnetic field on the average Nusselt number are also discussed. 
First, the case of a vertical cavity is considered. Then, the case of 
a horizontal layer heated from below is studied. Finally, we 
investigate the influence of the inclination of the layer on the 
present problem. 

The vertical layer heated from the sides 

In this section, we consider the influence of a magnetic field on 
temperature and flow distributions within a vertical enclosure 
(0 = 90°). Figures 2a-d  show typical contour maps of tempera- 
ture and stream function obtained numerically for R = 500, A = 4, 
and various values of Ha. In all these graphs, the increments 
between adjacent streamlines and isotherms are Bt~ = t~max/10 
and S T =  0.1 where ~ma,, is the maximum value of the stream 
function. The influence of a magnetic field on flow and tempera- 
ture distributions is apparent from these figures. In the absence of 
a magnetic field, the flow and temperature fields of Figure 2a are 
similar to the results obtained in the past by many investigators 
(see for instance Nield and Bejan 1992). Thus, the flow field 
comprises a unicellular flow of relatively high velocity, circulat- 
ing around the entire cavity. Because of boundary-layer effects, 
the temperature field is characterized by sharp drops in tempera- 
ture near the vertical walls. It is interesting to note that, if the 
magnetic field is relatively strengthened, the flow circulation is 
progressively inhibited by the retarding effect of the electromag- 
netic body force. Thus, the maximum intensity of circulation is 
~max = 31,069 for Ha = 0 but is only kl/ma x = 0.619 for Ha = 10. 
For large Ha, Figure 2d indicates that the convection is almost 
suppressed, and the isotherms are nearly parallel to the vertical 
wall, indicating that a quasiconduction regime is reached. Finally, 
it is observed from Figure 2 that, although the thicknesses of the 
vertical boundary layers increase with Ha, the opposite effect is 
observed for the flow upon the horizontal walls. Thus, the flow 
pattern in Figure 2d is characterized by a weak vertical flow but a 
very strong horizontal flow through very thin hydrodynamic 
boundary layers near the horizontal wails. 

In general, the quantities of interest involved in the present 
problem are related in a way so complicated that estimations of 
their orders of magnitudes by scale analysis are almost impossi- 
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(a) (b) 

I 

(c) (d) 
Figure 2 Computed contour maps of the isothermal lines and 
streamfunction for A = 4 ,  e=90  °, R=500, and a) Ha=0,  
~max=31.069; b) Ha= l .7 ,  ~rnax=12.948; C) Ha=3,  Oma×= 
6.033; d) Ha = 10, Gnax = 0.619 

ble. However, for a vertical cavity with the limiting case of 
boundary-layer flow regime, order of magnitude estimates can be 
derived on scaling grounds. 

In the boundary-layer regime; i.e., when R >> 1, most of the 
fluid motion is restricted to a thin layer 8' along each vertical 
wall. Recognizing 8' and H as the x' and y'  scales in the 
boundary-layer region of interest (8' <<H)  the conservation 
Equations 5 and 6 require the following balances: 

v AT 
(1 + Ha2 )g  ~ R--~- (11) 

AT AT 
v A 8 2 (12) 

where 8 = ( 8 ' / H )  is the dimensionless thickness of the horizon- 
tal boundary layer, and AT is the dimensionless temperature 
difference across the boundary layer. Obviously, from the ther- 
mal boundary conditions, Equation 8, AT ~ 1. 

Solving the balance equations for v and 8 we obtain the 
following: 

8 ~ [ A(1 + Ha2) /R]  1/2 (13) 

v ~ R / ( 1  + Ha 2) (14) 

Electromagnetic field porous layer: W. Bian et al. 

The order of magnitude of the velocity component u is 
obtained from the continuity Equation 1 as follows: 

v8 
u ~ -~- ~ [ R / (  3 (1  + Ha2))]  l/2 (15) 

The scale for the stream function can be obtained from 
Equation 7 as follows: 

q~ ~ [ R A / ( 1  + Ha2)] 1/2 (16) 

The total heat transfer rate from one side wall to the other is 
given by the following: 

AT' 
q' ~ k H - -  (17) 

5' 

The average Nusselt number, defined as the total heat transfer 
over the pure heat conduction through the cavity, has the follow- 
ing scale: 

q' kHAT ' /8 '  1 R 1/2 

Nu q" k H A T ' / L  A1/2 (1 + Ha2) I/2 (18) 

in which q'~ = k H A T ' / L  is the heat transfer in the pure-conduc- 
tion limit. 

In the absence of a magnetic field (Ha = 0), the scales above 
reduce to those predicted Bejan (1985) while studying the bound- 
ary-layer regime within a porous cavity heated isothermally from 
the sides. The results above are expected to be valid only when 
the vertical boundary layers are slender (8' <<H); i.e., for 
R/(1  + Ha 2) >> 1. Also, the vertical boundary layers must be 
distinct (8' << L), which requires that [R/(1 + Ha2)] a/2 >> A 1/2. 

The boundary-layer approximations to the governing equa- 
tions can now be obtained from the results of the above order-of- 
magnitude analysis. When the following dimensionless variables 
are used: 

x' y' +'  l 
x * = - -  y * = - -  0 * = - - - -  

l H c~/H 

u' l z" l 2 T' - T~ 
U* = -  U* = T* 

o~ f oL f H  AT' (19) 

LH 
12= 

R / ( 1  + Ha 2) 

the approximate forms of Equations 5 and 6 can be obtained as 
follows: 

3v * 3T * 
ax* - Ox* (20) 

3T * OT * 02T * 
u* - -  + v * (21) 

3x * Oy * 3x * 2 

Defining the boundary-layer variables as (Gill 1966) 

T* = r o ( y * ) + m ( x * ,  y * )  
, .  O o ( y . )  + , ( x .  ' y . )  (22) 

where ~ and • ~ 0 as x * - ~  % we can establish the necessary 
boundary conditions 

at x * = 0 ,  0 * = 0  T * = O  
(23) 

at x * ~ ,  0 * = * o ( y  * ) T * = T o ( Y *  ) 

In the above equations Oo(Y * ) and To(y * ) are the dimension- 
less stream function and temperature distribution within the core 
of the cavity. 
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| 8 • Present Study 
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R 

Figure 3 Effect of the Rayleigh number on the Nusselt num- 
ber for 0 = 90 ° and var ious values of the Hartmann number 

The dimensionless nonlinear governing Equations 20-21 and 
the boundary conditions 23 are exactly the same as those derived 
by Weber (1975) and Simpkins and Blythe (1980) while studying 
boundary-layer flows within a porous layer in the absence of a 
magnetic field (Ha = 0). The analytical results obtained by Simp- 
kins and Blythe, on the basis of an integral relation approach, are 
used here, because they proved to be in excellent agreement with 
numerical solutions of the boundary-layer equations. Translating 
their results in our notation, it is readily found that, for the 
present problem, the average Nusselt number is given by the 
following: 

Nu = 0.51 A(1 + Ha 2) (24) 

Figure 3 shows the dependence of the Nusselt number Nu on 
the Rayleigh and Hartmann numbers. Results are presented for 
5 × 102 _< R < 5 × 103 for which a boundary-layer flow regime 
prevails. The analytical results, Equation 24, are continuous lines; 
numerical results obtained for A = 4 and 8, shown as solid 
symbols, are seen to agree well. In the absence of a magnetic 
field, Equation 24 reduces to Nu = 0.51(R/A) 1/2 as predicted by 
Simpkins and Blythe (1980). For this situation, the numerical 
results obtained in the past by Lauriat and Prasad (1987) for 
A = 5 are also indicated in the graph for comparison. 

Another view of the effect of Ha on the heat transfer is found 
in Figure 4 where Nu is plotted as a function of Ha for R = 200, 
500, and 1500. The numerical results, obtained for A = 4, are 
depicted by the solid lines, and the dashed lines represent the 
boundary-layer regime, Equation 24. For a given Rayleigh num- 
ber, when Ha is relatively small, the flow is in the boundary-layer 
regime, and the numerically predicted Nusselt number is in good 
agreement with the analytical solution. The boundary layer regime 
prevails up to a given value of Ha, above which this regime ends 
because of the progressively retarding effect of the electromag- 
netic body force. As the value of Ha is made larger, the strength 
of the convective motion is progressively suppressed, and the 
boundary-layer regime is followed by the asymptotic and conduc- 
tion regime for which Nu ~ 1. Naturally, the Hartmann number 
ranges for asymptotic and conduction regimes are also extended 
as R is made larger. 

The horizontal layer heated from below 

The effect of a magnetic field on the Benard convection in a 
horizontal layer heated from below (0 = 180 °) is now considered. 
For this situation, there is a critical Rayleigh number, below 
which the fluid is at rest, and heat transfer is by pure conduction 
only. Because we have not found in the literature a linear stability 
analysis of the influence of a magnetic field on the Benard flow 
within an infinite horizontal porous layer heated from below, we 
include a brief outline here. The problem is self adjoint, so the 
principle of exchange of stability holds. Thus, the time derivative 
in the governing equations does not need to be considered. The 
linearized local forms of Equations 5-7  for small perturbations 
about the conductive state are as follows: 

a - ~  + ~y2 = -R-~y2 (25) 

~72T = ~ (26) 

where the superscript ^ indicates perturbations from the pure 
conduction state, and a = (1 + Ha2). The above equations must 
satisfy the following boundary conditions: 

a = 7  ~ = 0  at x = 0 ,  1 (27) 

The solution to Equations 25-27 is obtained by assuming the 
following: 

~l = U( x )e  lay T= Z ( x ) e  lay (28) 

Substituting Equation 28 into Equations 25 and 26 and elimi- 
nating U from the resulting equations, we obtain the following: 

a0 TM - a2(a + 1)0 l' + OL40 = Ro~20 (29) 

This equation admits solutions of the form 0 = C sin(n~ry), 
where C is an arbitrary constant and n an integer so that the 
boundary condition, Equation 27, is satisfied. 

10 

7 

5 

3 

2 

Nu 

1 i I 

0 2 

. . . . . .  Boundary Solution 

N u m e r i c a l  Solution 

i I , I , . I  * 

4 6 8 
Ha 

Figure 4 Effect of the Hartmann number on the Nusselt num- 
ber for 0 = 90 ° and various values of the Rayleigh number 
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(a) 
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(b), 

l@]@l@l@J@l@J@l@l@l@: 

(c) 

Figure 5 Computed contour maps of the streamfunction and 
isothermal lines for a horizontal cavity heated from below 
(0 = 180 ° ) for A =  6, R = 500, and a) Ha = 0, ~rna× = 15.400; b) 
Ha = 4, ~max =3"031; c) Ha = 5, ~bma × = 1.581 

Substituting 0 into Equation 29, it is readily found that the 
assumed flow is neutrally stable when 

ana,.ff  4 ..]- ~ 2 ( a  -.1- l ) n 2 7 r  2 + ot 4 
Rcr = ~x 2 (30) 

so that the minimum value occurs at n = 1 and 0Rcr/Oe~ = 0, that 
is, when 

R c r = ( l + ~ ) 2 T r 2 , [ n = l , o ~ = ' r r ( H a 2 + l )  a/4] (31) 

In the absence of a magnetic field; i.e., when Ha = 0, the 
above results reduce to 

Rcr = 47r 2, (n  = 1, a = "n') (32) 

which are the classical results obtained in the past by Lapwood 
(1948). 

From Equations 31 and 32, it is observed that, in the limit of 
Ha >> 1, the critical Rayleigh and wave numbers, Rcr and c%r, 

Electromagnetic field porous layer." W. Bian et al. 

are of order Ha 2 and Ha -1/2, respectively. In the case of a pure 
fluid layer, it was demonstrated by Chandrasekhar (1961) that 
Racr is also of order Ha~ but, due to higher derivative order of 
the Newtonian dissipation, a was found to be of order H a l  a/3 
(where R a f =  R/Da,  H a ¢ = H a / D ~ - a  and Da=K/L 2, see 
Vasseur et al. 1995). The effect of the Darcy number on the onset 
of motion within a porous layer heated from below by a constant 
heat flux or a constant temperature has been recently investigated 
by Alchaar et al. (1995) using the Brinkman model. 

Figures 5a-c  show typical streamlines and isotherms obtained 
numerically for A = 6, R = 500, and various values of Ha. In the 
absence of a magnetic field; i.e., when Ha = 0, it is seen from 
Figure 5a that six cells of approximately equal size and intensity 
occupy the width of the porous layer. The shape of the cells is 
observed to be skewed by the strong convection, qlma x = 15.40, 
resulting from the relatively high R considered here. The large 
distortion of the isotherms in Figure 5a is also an indicator of the 
intensity of the convection within the fluid layer. A step increase 
in the strength of a magnetic field from Ha = 0 to 4 results in the 
response as shown in Figure 5b. The six-cells mode obtained for 
Ha = 0 is now replaced by a eight-cells pattern. This trend is in 
agreement with the linear-stability theory, Equation 31, according 
to which the effect of the magnetic field is to decrease the 
wavelength of the incipient cells [c~ = "n'(Ha 2 + 1)1/4]. A l so ,  the 
strength of convection is considerably decreased by the drag 
induced by the magnetic field, as indicated by a weak distortion 
of the isothermal lines and the value of the maximum stream 
function, which is now only t~max = 3.03. As the Hartmann 
number is further increased, up to Ha = 5, ten cells of approxi- 
mately equal size and intensity are now seen to occupy the width 
of the cavity. For this situation, the isotherms of Figure 5c 
indicate that the convective regime is very weak. In fact, this 
situation is very close to the purely diffusive regime, which, in an 
infinite porous layer, would occur according to Equation 31 when 
Ha >_ 6 and R = 500. 

Figure 6 presents relationship between the average Nusselt 
number and the Hartmann number for the case with A = 6 and 
R = 500. Naturally, the heat transfer is maximum in the absence 
of a magnetic field, because the convection is maximum for this 
situation. In general, Nu decreases steeply with the imposition of 
an external magnetic field, because this latter considerably re- 
duces, the strength of convection as discussed earlier. At Ha = 3.6, 

• m- 6Cells ~ L ~  8 ~ . ~ 1 0 + 1 2 - = .  

5 

4 

Nu 

3 

2 

1 ~ J i J i 

0 5 10 15 20 25 30 
Ha 2 

Figure 6 Nusselt number Nu versus Hartmann number Ha for 
0=180  ° , A = 6 a n d R = 5 0 0  
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a slight increase of Nu is observed, which results from the 
transition in the number of cells within the cavity from six to 
eight. At Ha = 4.5, another bifurcation from an eight-cell to a 
ten-cell pattern occurs. Afterwards, the convective motion is 
more and more inhibited by the magnetic drag. At Ha = 5.0 a 
bifurcation from a ten-cell to a twelve-cell pattern occurs, but the 
convection is now so low (Nu ~ 1) that it does not affect the heat 
transfer. 

O 

The incl ined cavity 

The effect of a magnetic field on the natural convection heat 
transfer within a tilted cavity is now discussed. This problem, in 
the absence of a magnetic field, has been considered recently by 
Caltagirone and Bories (1985) and Moya et al. (1987). It was 
demonstrated by these authors that, at tilt angles close to zero, the 
preferred mode of circulation is multiple cell, while at greater tilt 

(a) (d) 

(b) (e) 

(c) 
Figure 7 C o m p u t e d  c o n t o u r  m a p s  o f  the  s t r e a m f u n c t i o n  and  i so the rma l  l ines f o r  an inc l ined cav i ty  f o r  A = 4, Ha = 0 R = 500, and  a) 
8 = 180 °, ~rnax = 15.417; b) e = 175 °, ~rnax = 15.671; c) e = 140 °, ~rna× = 28.804; d) 0 = 171 °, ~max = 17.733; e) 0 = 180 °, ~ma× = 16.156 
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Figure 8 Effect of  inc l inat ion angle on the Nusselt number  for 
A = 4, R = 500, and var ious values of  the Har tmann number  

angles, the preferred mode is single cell. The transition angle 
from multiple- to single-cell convection patterns was shown to 
depend on the aspect ratio and the Rayleigh number. This 
phenomenon is illustrated in Figure 7, where the streamlines are 
shown for A = 4, R = 500, and various values of the inclination 
angle 0. When the cavity is horizontal (0 = 180°), Figure 7a 
shows that four cells develop with alternate directions of rotation 
(Benard's cells). As the inclination angle 0 is decreased to 175% 
a five-ceU convection is obtained, as illustrated by Figure 7b. At 
this stage, a remark must be made with regard to the numerical 
procedure followed here. To speed up the computational proce- 
dure, the converged velocity and temperature fields, obtained 
from a numerical run with a given inclination angle 0, were used 
as initial conditions for another run with a small change in the tilt 
angle. In this way, it was found that the five-cell convection 
prevails up to 0 > 140 °. For smaller tilt angles, an evolution from 
multiple cells to single-cell convection is observed. Thus, for 
0 = 140 °, the flow in Figure 7c is characterized by a single cell, 
where all the fluid inside the porous material circulates in the 
same sense and the streamfunction has only one extreme value. 

In the transitional region between multiple- and single-cell 
convection, flow hysteresis effects were observed in the present 
study. Thus, when the inclination angle increased from 0 = 140 ° 
back to 0 = 180 °, the flow field did not revert to the previous 
solutions for the same 0. For example, the single-cell solution 
observed for 0 = 140 ° could be maintained up to 0 = 170 °. 
Increasing 0 to 171 °, it is found that the flow now consists of one 
main cell with secondary cells developing within. This type of 
flow pattern, illustrated in Figure 7d, has been observed in the 
past by Moya et al. (1987). As the tilt angle is increased further, 
three cells develop with alternate directions of rotation and are 
maintained up to 0 = 180 ° (Figure 7e). To the author's knowl- 
edge, this flow "hysteresis"  has not been observed in the past. 

The average Nusselt number Nu for aspect ratio of four and 
for several Hartmann numbers is shown in Figure 8 as a function 
of the tilt angle. As the inclination 0 approaches 0 °, the Nusselt 
number tends toward unity, indicating that the heat transfer is 
mainly due to conduction. This is expected, because 0 = 0 ° 
corresponds to the case of a cavity heated from the top, which 

Electromagnetic field porous layer: W. Bian et aL 

causes no convection, because the density gradient is stable. Most 
of the change in the heat transfer occurs in the range 0 ° < 0 < 90 °, 
where the cavity is heated from the top. Also, it is observed that, 
for a given inclination angle, the Nusselt number decreases with 
an increase of the Hartmann number, because the convection is 
considerably decreased with the application of the magnetic field. 
As the inclination angle is increased above 90 ° , the enclosure 
starts to be heated from the bottom. Each curve passes through a 
maximum that depends upon Ha. As demonstrated by Moya et al. 
(1987), the peak in Nusselt number occurs approximately at an 
inclination angle for which the most vigorous convection flow is 
developed. As the inclination angle is increased further, the 
curves are seen to pass through a second maximum. Contrary to 
the case of the first maximum, which was obtained for a single-cell 
mode, the second maximum is due to the appearance of a 
multiple-cell convection. The transition angle from single- to 
multiple-cell convection patterns depends strongly upon the mag- 
netic field. For instance, a transition from one-cell to three-cell 
pattern occurs at 0 = 1 7 1  ° when H a = 0  but it is at about 
0 = 141 ° when Ha = 1.7. Therefore, the second peak in Nusselt 
number takes place at a lower transition angle when the Hart- 
mann number is increased. Also, Figure 8 indicates that, for 
Ha = 3, not only there is a transition from one-cell to three-cell 
pattern at 0 = 131 ° but a second transition from three-cell to 
five-cell pattern occurs at 0 --- 143 °. Naturally, due to the flow 
hysteresis discussed before, the transition angles obtained when 
the inclination angle is decreased from 0 = 180 ° toward 0 ° are 
different from those of Figure 8. From the numerical results (not 
presented here) it was found that the transition from multiple- to 
single-cell convection generally occurred at lower angles. For 
example, when Ha = 0, a transition angle 0 = 140 o was obtained. 
Finally, it must be mentioned that the occurrence of the first 
maximum, for the single-cell mode, was not affected by the 
hysteresis effect. 

C o n c l u s i o n s  

The effect of a transverse magnetic field on buoyancy-driven 
convection in an inclined rectangular porous cavity, saturated 
with an electrically conducting fluid, was studied both numeri- 
cally and analytically. The main conclusions of this study are 
summarized as follows: 

1. In the case of a vertical cavity heated from the side (0 = 90°), 
it is shown that a simple dimensional analysis can correctly 
predict the asymptotic behavior of the velocity field in the limit 
R ~ w. Also, in the boundary-layer regime, the dependence of 
the Nusselt number on R, A, and Ha is obtained explicitly 
following the integral approach of Simpkins and Blythe (1980). 
The resulting expression, Nu = 0.51[R/A(1 + Ha2)] x/2 was con- 
finned by comparing the numerical results obtained for cavities 
with aspect ratios A = 4 and 8. 

2. The effect of a magnetic field on the Benard convection, 
within a porous layer heated from below 0 = 180 ° has been 
considered. The critical Rayleigh number for the onset of convec- 
tion has been predicted, using a linear stability theory. For 
supercritical convection, the adjustment of the roll pattern, after a 
change in the Hartmann number, is illustrated for a given Rayleigh 
number and a cavity with an aspect ratio A = 6. Results for the 
heat transfer as a function of Ha are presented. 

3. The effect of the orientation angle on the present problem was 
found to be considerable. The transition angle from single cell- to 
multiple-convection pattern is considerably affected by the impo- 
sition of a magnetic field. Thus, for a cavity with R = 500 and 
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A = 4, the transition angle is 0 = 1710 when  Ha = 0, but it is 
0 = 131 ° when  Ha = 3.0. 
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